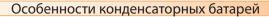
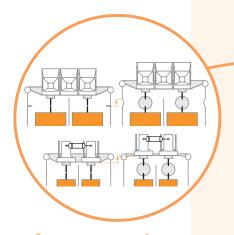
CP


***************************************	4.0
КОНДЕНСАТОРЫ ТРЕХФАЗНЫЕ	18
КОНТАКТОРЫ ДЛЯ КОНДЕНСАТОРНЫХ БАТАРЕЙ	18
РЕГУЛЯТОРЫ РЕАКТИВНОЙ МОЩНОСТИ	19
КОНВЕРТЕР ИНТЕРФЕЙСОВ	19
ФИЛЬТРУЮЩИЕ ДРОССЕЛИ	19
ВЫСОКОВОЛЬТНЫЕ СИЛОВЫЕ КОНДЕНСАТОРЫ	19

КОМПОНЕНТЫ СИСТЕМ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ



Трехфазные конденсаторы

→ Для снятия остаточного напряжения конденсаторные батареи оснащены разрядными резисторами

ightarrow Все конденсаторные батареи оснащены защитой от избыточного давления

→ Номинальная мощность от 1 до 50 kVAr

→ Возможность монтажа всех конденсаторных батарей в горизонтальном положении (кроме KNK 5065)

ightarrow Номинальное напряжение 400, 440 V (460, 480, 525 - под заказ)

Трехфазные конденсаторы

Применение - Конденсаторы используются для корректировки коэффициента мощности индуктивных потребителей (трансформаторов, электрических двигателей, ректификаторов) в электрических сетях для напряжений до 660 В.

Конструкция

Конденсаторы состоят из цилиндрического алюминиевого корпуса, внутри которого установлен диэлектрик стремя полипропиленовыми металлизированными слоями, что позволяет обеспечить низкий уровень потерь и высокую устойчивость к высоким импульсным токам.

Все внутренние полости между обмотками, а также между обмотками и корпусом заполняются специальным пропитывающим составом. Кроме увеличения диэлектрической прочности пропитка значительно улучшает теплоотдачу изнутри корпуса.

Конденсаторы пропитаны растительным маслом, не содержащим ПХБ (полихлорированных бифенилов) и галогеносодержащих веществ и является биологически распадающимся.

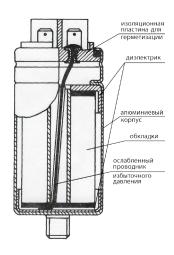
Применение конденсаторов с напряжением 400 и 440В.

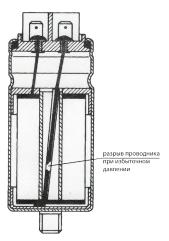
Так как напряжение напрямую влияет на реактивную мощность конденсатора, мы предлагаем линейку конденсаторов с номинальным напряжением Un – 440В. При этом обеспечивается повышение надежности и срока службы конденсаторов, так как в этом случае конденсатор гарантировано будет выдерживать повышенное напряжение со стороны сети, которое, в соответствии со стандартом UNE-EN-50160, может достигать 10% от Un.

Согласно стандарта EN-60831—1\2, конденсаторы на промышленной частоте должны выдерживать напряжение величиной 1,10 *Uca(440B) в течение не менее 8 часов в сутки.

* Внимание: При применении конденсаторов 440В в сети с напряжением Un=380В – номинальная мощность конденсатора уменьшается до \approx 25%.

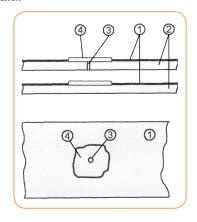
Защита от избыточного давления


Для обеспечения защиты внутренних элементов конденсатора применяется разъединитель, который срабатывает при возникновении избыточного давления. Назначением устройства является прерывание тока короткого замыкания при достижении конденсатором окончания срока службы и его неспособности к последующему восстановлению. Это устройство разрывает электрическую цепь конденсатора, используя внутреннее давление, которое образуется во время разрушения пленки от перегрева, вызванного коротким замыканием.


Остаточное напряжение

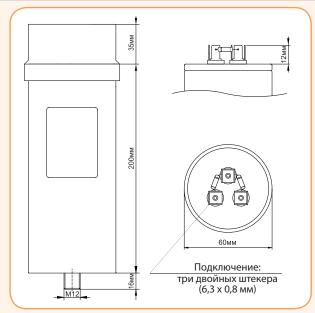
После отсоединения конденсатора от сети на его выводах еще присутствует остаточное напряжение, которое представляет опасность для обслуживающего персонала. Для его устранения все трехфазные конденсаторы снабжены разрядными сопротивлениями, которые снижают уровень напряжения до уровня меньше чем 75В за 3 минуты.

Технология производства и самовосстановление конденсаторов


Исходным материалом для производства конденсаторов полипропиленовая пленка. В начале технологического процесса происходит металлизация полипропиленовой пленки для формирования на токопроводящего слоя толщиной 10 – 50 нм из смеси цинка и алюминия. Применение материала с указанными характеристиками позволяет добиться получения эффекта самовостановления в случае возникновения пробоя диэлектрика между обкладками конденсатора. При этом электрическая энергия испаряет металл вокруг поврежденного места и тем самым предотвращает короткое замыкание. Потеря емкости, в течении данного процесса, совсем незначительна (около рF). Способность к самовосстановлению гарантирует высокую операционную надежность и длительный срок эксплуатации конденсатора. Для сведения к минимуму тангенса угла диэлектрических потерь на торцы конденсаторных секций наносится в два слоя покрытие из цинка, которое получило название цинковый крепленый край. За счет этого достигается более плотный контакт между выводами конденсатора и конденсаторной секцией. На всех стадиях технологического процесса производства конденсаторов проводиться измерение основных параметров изделия. Конденсаторы выпускаются в двух основных вариантах корпуса: в алюминиевом исполнении и в корпусе из самозатухаемого пластика с различными вариантами выводов.

Самовосстановление конденсаторов.

- 1 металлизированный слой
- 2 слой полипропилена
- 3 место пробоя
- 4 место испарения металлизированого слоя

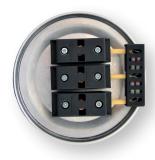


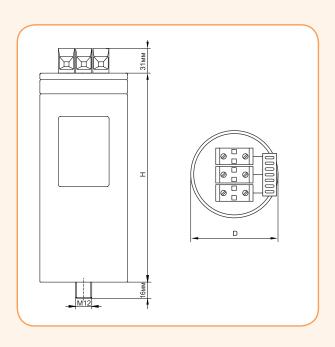
Для обеспечения надежного естественного охлаждения, растояние между конденсаторными батареями должно быть: 2,5 – 25 kVAr не менее 25мм. 30 – 50 kVAr не менее 50мм.

Трехфазные конденсаторы LPC

Техничес	кие характеристики:						
Номиналь	ное напряжение Un	400, 440 V (460, 480, 525 V -под заказ)					
Номиналь	ная частота	50 Hz (60 Hz - под заказ)					
Допуск от	клонения емкости	- 5 % до + 15 %					
Потери:	- Диэлектрические	< 0,2 W/kVAr					
потери.	- Суммарные	< 0,45 W/kVAr					
Степень з	ащиты	IP 20					
Время раз	вряда	≤ 3 мин. 75 V					
Соответст	твие стандартам	IEC 60831 - 1/2					
Голожали	a army	самовосстановление, разъединитель					
Безопасно	ОСТЬ	избыточного давления					
Диэлектр	ик	металлизированная полипропиленовая пленка;					
Рабочая т	емпература	- 25 °C до + 55 °C					
Температ	ура хранения	- 40 °C до + 70 °C					
π		1,1 × Un (номин. напряжение)					
допустим	ая перегрузка	1,5 × In (номин. ток)					
Номиналь	ный срок службы	120 000 ч. (темп. класс С)					
Пусковой	ток	200 × In макс.					
П		- между слоями 2,15 × Un, AC, 2 с.					
проведен	ные испытания	- слои - корпус 3,6 kV, AC, 2 с.					

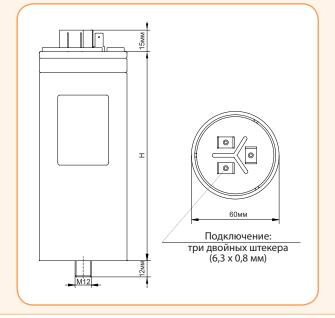
			0.0	ion nopiny c	J,0 KV, 11G, 2 C.		
Номинальное напряжение и частота	Тип	Код	Номинальная мощность (kVAr)	Номинальная ёмкость (µF)	Номинальный ток 50 Гц (A)	Вес (кг)	Упаковка (шт.)
	LPC 1 kVAr, 400V, 50Hz	4656700	1	3 x 6,6	1,4	0,75	1
	LPC 1.5 kVAr, 400V, 50HZ	4656701	1,5	3 x 9,9	2,2	0,75	1
400 V	LPC 2.5 kVAr, 400V, 50HZ	4656702	2,5	3 x 16,6	3,6	0,75	1
50 Hz	LPC 3 kVAr, 400V, 50HZ	4656703	3	3 x 19,9	4,3	0,75	1
	LPC 4 kVAr, 400V, 50HZ	4656704	4	3 x 26,5	5,8	0,75	1
	LPC 5 kVAr, 400V, 50HZ	4656705	5	3 x 33,2	7,2	0,75	1
	LPC 2.5 kVAr, 440V, 50HZ	4656710	2,5	3 x 13,7	3,3	0,75	1
440 V	LPC 3 kVAr, 440V, 50HZ	4656711	3	3 x 16,4	3,9	0,75	1
50 Hz	LPC 4 kVAr, 440V, 50HZ	4656712	4	3 x 21,9	5,2	0,75	1
	LPC 5 kVAr, 440V, 50HZ	4656713	5	3 x 27,4	6,6	0,75	1
	LPC 2.5 kVAr, 460V, 50HZ	4656720	2,5	3 x 12,5	3,1	0,75	1
460 V	LPC 3 kVAr, 460V, 50HZ	4656721	3	3 x 15	3,8	0,75	1
50 Hz	LPC 4 kVAr, 460V, 50HZ	4656722	4	3 x 20,1	5	0,75	1
	LPC 5 kVAr, 460V, 50HZ	4656723	5	3 x 25,1	6,3	0,75	1
	LPC 2.5 kVAr, 480V, 50HZ	4656730	2,5	3 x 11,5	3	0,75	1
480 V	LPC 3 kVAr, 480V, 50HZ	4656731	3	3 x 13,8	3,6	0,75	1
50 Hz	LPC 4 kVAr, 480V, 50HZ	4656732	4	3 x 18,4	4,8	0,75	1
	LPC 5 kVAr, 480V, 50HZ	4656733	5	3 x 23	6	0,75	1
	LPC 2.5 kVAr, 525V, 50HZ	4656740	2,5	3 x 9,6	2,7	0,75	1
525 V	LPC 3 kVAr, 525V, 50HZ	4656741	3	3 x 11,5	3,3	0,75	1
50 Hz	LPC 4 kVAr, 525V, 50HZ	4656742	4	3 x 15,4	4,4	0,75	1
	LPC 5 kVAr, 525V, 50HZ	4656743	5	3 x 19,2	5,5	0,75	1





Трехфазные конденсаторы LPC

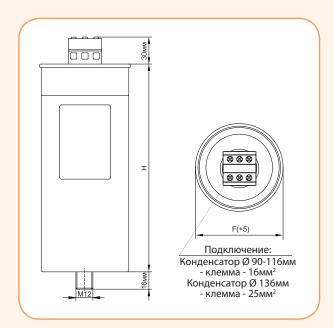
				Ном.	Ном.	Ном. ток	D-диаметр	Сечение		
1	Un (V)	Тип	Код	мощность	ёмкость	ln	Х	подкл.	Bec	Упаковка
1	fn (Hz)	INII	под	Qn	Cn	50 Гц	Н-высота	проводн.	(кг)	(шт.)
				(kVAr)	(μF)	(A)	(MM)	(MM ²)		
		LPC 10 kVAr, 400V, 50HZ	4656750	10	3 x 66,3	14,4	85 x 215	6	1,6	1
		LPC 12.5 kVAr, 400V, 50HZ	4656751	12,5	3 x 82,9	18	100 x 215	10	2,2	1
		LPC 15 kVAr, 400V, 50HZ	4656752	15	3 x 99,5	21,7	100 x 215	10	2,2	1
	400 V	LPC 20 kVAr, 400V, 50HZ	4656753	20	3 x 132,6	28,9	100 x 215	10	2,2	1
	50 Hz	LPC 25 kVAr, 400V, 50HZ	4656754	25	3 x 165,8	36,1	100 x 300	10	2,9	1
		LPC 30 kVAr, 400V, 50HZ	4656755	30	3 x 198,9	43,3	100 x 300	10	3,9	1
		LPC 40 kVAr, 400V, 50HZ	4656756	40	3 x 265,3	57,7	136 x 300	50	5,1	1
		LPC 50 kVAr, 400V, 50HZ	4656757	50	3 x 331,6	72,2	136 x 300	50	5,1	1
		LPC 10 kVAr, 440V, 50HZ	4656760	10	3 x 54,8	13,1	85 x 215	6	1,6	11
		LPC 12.5 kVAr, 440V, 50HZ	4656761	12,5	3 x 68,5	16,4	100 x 215	10	2,2	1
		LPC 15 kVAr, 440V, 50HZ	4656762	15	3 x 82,2	19,7	100 x 215	10	2,2	1
	440 V	LPC 20 kVAr, 440V, 50HZ	4656763	20	3 x 109,6	26,2	100 x 300	10	2,9	1
	50 Hz	LPC 25 kVAr, 440V, 50HZ	4656764	25	3 x 137	32,8	100 x 300	10	2,9	1
		LPC 30 kVAr, 440V, 50HZ	4656765	30	3 x 164,4	39,4	120 x 300	25	3,9	1
		LPC 40 kVAr, 440V, 50HZ	4656766	40	3 x 219,2	52,5	136 x 300	50	5,1	1
		LPC 50 kVAr, 440V, 50HZ	4656767	50	3 x 274	65,6	136 x 300	50	5,1	1
		LPC 10 kVAr, 460V, 50HZ	4656770	10	3 x 50,1	12,6	85 x 215	6	1,6	1
		LPC 12.5 kVAr, 460V, 50HZ	4656771	12,5	3 x 62,7	15,7	100 x 215	10	2,2	1
		LPC 15 kVAr, 460V, 50HZ	4656772	15	3 x 75,2	18,8	100 x 215	10	2,2	1
	46011	LPC 20 kVAr, 460V, 50HZ	4656773	20	3 x 100,3	25,1	100 x 300	10	2,9	1
	460 V	LPC 25 kVAr, 460V, 50HZ	4656774	25	3 x 125,4	31,4	100 x 300	10	2,9	1
	50 Hz	LPC 30 kVAr, 460V, 50HZ	4656775	30	3 x 150,4	37,7	120 x 300	25	3,9	1
		LPC 30.8 kVAr, 460V, 50HZ	4656776	30,8	3 x 154,4	38,7	120 x 300	25	3,9	1
		LPC 40 kVAr, 460V, 50HZ	4656777	40	3 x 200,6	50,2	136 x 300	50	5,1	1
		LPC 50 kVAr, 460V, 50HZ	4656778	50	3 x 250,7	62,8	136 x 300	50	5,1	1
		LPC 10 kVAr, 480V, 50HZ	4656780	10	3 x 46,1	12	85 x 215	6	1,6	1
		LPC 12.5kVAr, 480V, 50HZ	4656781	12,5	3 x 57,6	15	100 x 215	10	2,2	1
		LPC 15 kVAr, 480V, 50HZ	4656782	15	3 x 69,1	18	100 x 215	10	2,2	1
	480 V	LPC 20 kVAr, 480V, 50HZ	4656783	20	3 x 92,1	24,1	100 x 300	10	2,9	1
	50 Hz	LPC 25 kVAr, 480V, 50HZ	4656784	25	3 x 115,1	30,1	120 x 300	25	3,9	1
		LPC 30 kVAr, 480V, 50HZ	4656785	30	3 x 138,2	36,1	120 x 300	25	3,9	1
		LPC 40 kVAr, 480V, 50HZ	4656786	40	3 x 184,2	48,1	136 x 300	50	5,1	1
ı		LPC 50 kVAr, 480V, 50HZ	4656787	50	3 x 230,3	60,1	136 x 300	50	5,1	1
		LPC 10 kVAr, 525V, 50HZ	4656790	10	3 x 38,5	11	85 x 215	6	1,6	1
١		LPC 12.5kVAr, 525V, 50HZ	4656791	12,5	3 x 48,1	13,7	100 x 215	10	2,2	1
١		LPC 15 kVAr, 525V, 50HZ	4656792	15	3 x 57,7	16,5	100 x 215	10	2,2	1
	525 V	LPC 20 kVAr, 525V, 50HZ	4656793	20	3 x 77	22	100 x 300	10	2,9	1
	50 Hz	LPC 25 kVAr, 525V, 50HZ	4656794	25	3 x 96,2	27,5	100 x 300	10	2,9	1
ı		LPC 30 kVAr, 525V, 50HZ	4656795	30	3 x 115,5	33	120 x 300	25	3,9	1
		LPC 40 kVAr, 525V, 50HZ	4656796	40	3 x 154	44	136 x 300	50	5,1	1
		LPC 50 kVAr, 525V, 50HZ	4656797	50	3 x 192,5	55	136 x 300	50	5,1	1


Трехфазные конденсаторы KNK

Технические	характеристики:					
Номинальное	напряжение Un	400, 440 V (460, 480, 525 V -под заказ)				
Номинальная	частота		50 Hz (60 Hz - под заказ)			
Допуск откло	нения емкости		- 5 % до + 15 %			
Потери:						
- Диэлектри	ческие		< 0,2 W/kVAr			
- Суммарные	2		< 0,5 W/kVAr			
Степень защи	ІТЫ		IP 20			
Время разряд	(a		≤ 3 мин. 75 V			
Соответствие	стандартам		IEC 60831 - 1/2			
Безопасность			самовосстановление, разъединитель избыточного давления			
Диэлектрик	5065	1053 (сухие)	металлизированная полипропиленовая пленка;			
	(маслонаполненные)		растительное масло, без ПХБ			
Рабочая темп	ература		- 25 °C до + 55 °C			
Температура	хранения		- 40 °C до + 70 °C			
Допустимая г	перегрузка		1,1 × Un (8 часов/день) 1,3 × In (номин.ток)			
Пусковой	5065 (маслонаполне	енные)	100 × In макс.			
ток	1053 (сухие)		130 × In макс.			
Проведенные	е испытания		- между слоями 2,15 × Un, AC, 2 с. - слои - корпус 3,6 kV, AC, 2 с.			

Трехфазные конденсаторы KNK 5065 (маслонаполненные)

Un (V) fn (Hz)	Тип	Код	Номинальная мощность (kVAr)	Номинальная ёмкость (µF)	Номинальный ток 50 Гц (A)	Размеры Н (мм)	Вес (кг)	Упаковка (шт.)
	KNK 5065 2,5 kVAr, 400V, 50Hz	4656501	2,5	3 x 16,6	3,6	145	0,45	1/36
400 V	KNK 5065 3 kVAr, 400V, 50Hz	4656502	3	3 x 19,9	4,3	145	0,45	1/36
50 Hz	KNK 5065 4 kVAr, 400V, 50Hz	4656503	4	3 x 26,5	5,8	185	0,55	1/36
	KNK 5065 5 kVAr, 400V, 50Hz	4656504	5	3 x 33,2	7,2	185	0,55	1/36
	KNK 5065 2,5 kVAr, 440V, 50Hz	4656518	2,5	3 x 13,7	3,3	145	0,45	1/36
440 V	KNK 5065 3 kVAr, 440V, 50Hz	4656519	3	3 x 16,5	3,9	145	0,45	1/36
50 Hz	KNK 5065 4 kVAr, 440V, 50Hz	4656520	4	3 x 21,9	5,3	185	0,55	1/36
	KNK 5065 5 kVAr, 440V, 50Hz	4656521	5	3 x 27,4	6,6	185	0,55	1/36



Трехфазные конденсаторы сухие KNK 1053 (сухие)

Un (V) fn (Hz)	Тип	Код	Номинальная мощность (kVAr)	Номинальная ёмкость (µF)	Номинальный ток 50 Гц (A)	Разм Н (мм)	еры F (мм)	Вес (кг)	Упаковка (шт.)
	KNK 1053 10 kVAr, 400V, 50Hz	4656560	10	3 x 66,3	14,4	205	90	1,20	1/16
	KNK 1053 12,5 kVAr, 400V, 50Hz	4656561	12,5	3 x 83,3	18	205	90	1,20	1/16
	KNK 1053 15 kVAr, 400V, 50Hz	4656562	15	3 x 100	21,7	240	90	1,40	1/16
400 V	KNK 1053 20 kVAr, 400V, 50Hz	4656563	20	3 x 133	28,9	205	116	1,60	1/9
50 Hz	KNK 1053 25 kVAr, 400V, 50Hz	4656564	25	3 x 165,8	36,1	240	116	1,90	1/9
	KNK 1053 30 kVAr, 400V, 50Hz	4656565	30	3 x 198,9	43,3	240	116	2,30	1/9
	KNK 1053 40 kVAr, 400V, 50Hz	4656566	40	3 x 265,0	57,8	305	136	3,50	1/9
	KNK 1053 50 kVAr, 400V, 50Hz	4656567	50	3 x 331,5	72,2	370	136	4,50	1/9
	KNK 1053 10 kVAr, 440V, 50Hz	4656551	10	3 x 54,9	13,1	205	90	1,20	1/16
	KNK 1053 12,5 kVAr, 440V, 50Hz	4656552	12,5	3 x 68,6	16,4	205	90	1,20	1/16
	KNK 1053 15 kVAr, 440V, 50Hz	4656553	15	3 x 82,3	19,7	240	90	1,40	1/16
440 V	KNK 1053 20 kVAr, 440V, 50Hz	4656554	20	3 x 110,0	26,2	205	116	1,60	1/9
50 Hz	KNK 1053 25 kVAr, 440V, 50Hz	4656555	25	3 x 137,1	32,8	240	116	1,90	1/9
	KNK 1053 30 kVAr, 440V, 50Hz	4656556	30	3 x 164,4	39,4	280	116	2,30	1/9
	KNK 1053 40 kVAr, 440V, 50Hz	4656568	40	3 x 219,0	52,5	305	136	3,50	1/9
	KNK 1053 50 kVAr, 440V, 50Hz	4656569	50	3 x 274,0	65,6	305	136	4,50	1/9

Выбор предохранителей и сечения подключаемых проводников

Номинальная		400V, 50Hz			525V, 50Hz			690V, 50Hz	
мощность конденсатора	Номинальный ток конденсатора	Предохранитель gL/gG	Сечение подключаемых проводников	Номинальный ток конденсатора	Предохранитель gL/gG	Сечение подключаемых проводников	Номинальный ток конденсатора	Предохранитель gL/gG	Сечение подключаемых проводников
Q _N (kVAr)	I _N (A)	(A)	(mm² Cu)	I _N (A)	(A)	(mm² Cu)	I _N (A)	(A)	(mm² Cu)
2,5	3,6	10	2,5	2,7	10	1,5	-	10	1,5
5	7,4	16	2,5	5,5	10	1,5	4,2	10	1,5
7,5	10,8	20	2,5	8,3	16	2,5	6,3	10	1,5
10	14,4	25	4,0	11,0	20	2,5	8,4	16	2,5
12,5	18,1	32	6,0	13,8	32	2,5	10,5	20	2,5
15	21,6	35	6,0	16,5	25	4,0	12,5	20	2,5
20	29,0	50	10,0	22,0	35	6,0	17,0	32	4,0
25	36,0	63	10,0	27,5	50	10,0	21,0	35	6,0
30	43,0	80	16,0	33,0	63	16,0	25,0	50	6,0
40	58,0	100	25,0	44,0	80	25,0	33,0	63	16,0
50	72,0	125	35,0	55,0	100	35,0	42,0	80	25,0
60	87,0	160	50,0	66,0	125	50,0	50,0	100	25,0
75	108,0	160	50,0	82,0	125	50,0	63,0	100	35,0
80	115,0	200	70,0	88,0	160	70,0	67,0	125	50,0
100	144,0	250	95,0	110,0	200	70,0	84,0	160	50,0
120	-	250	-	-	200	-	-	-	-
125	-	250	-	-	200	-	-	-	-
150	-	315	-	-	250	-	-	-	-
175	-	400	-	-	315	-	-	-	-
200	-	400	-	-	315	-	-	-	-
225	-	500	-	-	400	-	-	-	-
250	-	500	-	-	400	-	-	-	-
275	-	630	-	-	500	-	-	-	-
300	-	630	-	-	500	-	-	-	-
350	-	800	-	-	630	-	-	-	-
375	-	800	-	-	630	-	-	-	-
400	-	800	-	-	630	-	-	-	-

Значения сечений подключаемых проводников, указанные в таблице (ориентировочные) действительны для нормальных условий работы (при температуре окружающей среды не более 40°С, при отсутствии гармонических искажений в сети и т.п.). Если условия эксплуатации отличаются от нормы, следует выбирать более высокие значения.

Значение номинального тока конденсатора при различном напряжении, можно пересчитать по соответствующим коэффициентам: (230V - 1.74 / 440V - 0.91 / 480V - 0.83 / 525V - 0.76). Однако следует принять во внимание, что вышеперечисленные значения коэффициентов - условные, т.к. на них оказывают влияние: температура внутри шкафа, качество кабеля, максимальная температура изоляции кабеля, использование одно- или многожильного кабеля, а также его длина.

Формулы расчета

Мощность конденсатора, трехфазного:

$$Q_{c} = C \cdot 3 \cdot V^{2} \cdot 2 \cdot \pi \cdot f_{n}$$

Пример: $3 \times 331.5 \mu F$ при 400 V/50 Hz 0.0003315 · $3 \cdot 400^2$ · 314.16 = 50 kVAr

Резонансная частота (fr) и коэффициент фильтрации (p) в системах с фильтерной компенсацией:

$$f_r = f_n \cdot \sqrt{\frac{1}{p}}$$
 или $p = \left(\frac{f_n}{f_r}\right)^2$

Пример: p=0.07 при частоте 50 Hz f_r = 189 Hz

Расчет коэффициента мощности $\cos \varphi$:

$$\cos \varphi = \frac{P}{S}$$
 или $\cos \varphi = \sqrt{\frac{1}{1 + \tan \varphi^2}}$ или $\cos \varphi = \sqrt{\frac{1}{1 + \left(\frac{Q}{P}\right)^2}}$

Мощность конденсатора, трехфазного с фильтрующим дросселем:

$$Q_c = \frac{\text{C} \cdot 3 \cdot \text{V}^2 \cdot 2 \cdot \pi \cdot f_n}{1 \cdot \text{p}}$$
 Пример: $3 \times 331.5 \mu\text{F}$ при $400 \text{V}/50 \text{Hz}$ при $p = 7\%$ 0.0003315 $\cdot 3 \cdot 400^2 \cdot 314.16 / 1 \cdot 0.07 = 53.8 \text{ kVAr}$

Фазный ток конденсатора:

$$I = \frac{Q_c}{V \cdot \sqrt{3}}$$
 или $Q_c = I \cdot V \cdot \sqrt{3}$

Пример: 25 kVAr при 400V **25000 / (400 · 1.73) = 36 A**

V = Ном. напряжение (V)

I = Ном. ток (A)

 $f_{\rm n}$ = Ном. частота сети (Hz)

 f_r = Резонансная частота (Hz)

р = Коэффициент фильтрации (%)

Q_c = Мощность конденсатора (VAr)

С = Емкость (F, farad)

Р = Активная мощность (W)

S = Полная мощность (VA)

Q = Реактивная мощность (VAr)

Мощность конденсаторов для индивидуальной компенсации двигателей

	Мощнос	ть конден	саторов в к	VAr с учет	ом мощно	сти двигат	елей, врац	цающего м	омента и н	агрузки
Номин.	3000 o	б/мин	1500 o	б/мин	1000 c	б/мин	750 o	б/мин	500 o	б/мин
мощность двигат.	Холостой	Полная								
(kW)	ход (kVAr)	нагрузка (kVAr)								
5,5	2,2	2,9	2,4	3,3	2,7	3,6	3,2	4,3	4	5,2
7,5	3,4	4,4	3,6	4,8	4,1	5,4	4,6	6,1	5,5	7,2
11	5	6,5	5,5	7,2	6	8	7	9	7,5	10
15	6,5	8,5	7	9,5	8	10	9	12	10	13
18,5	8	11	9	12	10	13	11	15	12	16
22	10	12,5	11	13,5	12	15	13	16	15	19
30	14	18	15	20	17	22	22	25	22	28
37	18	24	20	27	22	30	26	34	29	39
45	19	28	21	31	24	34	28	38	31	43
55	22	34	25	37	28	41	32	46	36	52
75	28	45	32	49	37	54	41	60	45	68
90	34	54	39	59	44	65	49	72	54	83
110	40	64	46	70	52	76	58	85	63	98
132	45	72	53	80	60	87	67	97	75	110
160	54	86	64	96	72	103	81	116	91	132
200	66	103	77	115	87	125	97	140	110	160
250	75	115	85	125	95	137	105	150	120	175

Описание - Необходимая мощность конденсатора вычисляется по следующей формуле:

 $Q_n = 0.9 \cdot U_n \cdot I_{mag} \cdot \sqrt{3}$

где:

 $Q_{_{\rm n}}$ - номинальная мощность конденсатора (kVAr)

 U_{n} - номинальное напряжение двигателя (кV)

 I_{mag} - намагничивание двигателя (A)

Мощность конденсаторов должна составлять от 35% до 50% от номинальной мощности генератора. Поскольку рабочая мощность генератора подвержена большим колебаниям, мощность подключаемых конденсаторов должна регулироваться автоматически.

Зависимость мощности конденсатора от величины напряжения

Номинальное напряжение и частота	Номинальная ёмкость (µF)	Номинальная мощность (kVAr) при U _n = 380 V	Номинальная мощность (kVAr) при U _n = 400 V	Номинальная мощность (kVAr) при U _n = 420 V	Номинальная мощность (kVAr) при U _n = 440 V
	3 x 16,6	2,3	2,5	-	-
	3 x 19,9	2,7	3	-	-
	3 x 26,5	3,6	4	-	-
	3 x 33,2	4,5	5	-	-
	3 x 66,3	9,0	10	-	-
400 V	3 x 83,3	11,3	12,5	-	-
50 HZ	3 x 100	13,6	15	-	-
	3 x 133,0	18,1	20	-	-
	3 x 165,8	22,6	25	-	-
	3 x 198,9	27,1	30	-	-
	3 x 265,0	36,1	40	-	-
	3 x 331,5	45,1	50	-	-
	3 x 13,7	1,9	2,1	2,3	2,5
	3 x 16,5	2,2	2,5	2,7	3
	3 x 21,9	3,0	3,3	3,6	4
	3 x 27,4	3,7	4,1	4,6	5
	3 x 54,9	7,5	8,3	9,1	10
440 V	3 x 68,6	9,3	10,3	11,4	12,5
50 Hz	3 x 82,3	11,2	12,4	13,7	15
	3 x 110,0	14,9	16,5	18,2	20
	3 x 137,1	18,6	20,7	22,8	25
	3 x 164,4	22,4	24,8	27,3	30
	3 x 219,0	29,8	33	36,4	40
	3 x 274,0	37,3	41,3	45,6	50

Формула зависимости номинальной мощности конденсатора от напряжения в сети

 $(U_e/U_n)^2 \cdot Q_c = Q_f$

гле:

 U_{e} - напряжение сети;

 ${\bf U}_{\bf n}$ - номинальное напряжение конденсатора;

 ${f Q}_{{f c}}$ - номинальная мощность конденсатора;

 $\mathbf{Q}_{_{\! \mathrm{f}}}$ - фактическая мощность конденсатора.

Подбор конденсаторов для компенсации реактивной мощности трансформаторов

Компенсироваться должна только реактивная мощность холостого хода трансформатора. Для трехфазных трансформаторов, в зависимости от их мощности, компенсируемая мощность составляет от 3 до 10% от номинальной мощности.

Мощность конденсаторов ограничивается мощностью сварочного трансформатора и составляет от 40 до 50% его полной мощности. В сварочных полупроводниковых выпрямителях постоянного тока мощность составляет 10% от их полной мощности. Для сварочных преобразователей выбор производится так же, как и для электродвигателей переменного тока.

Harring	Мощно	сти конденсатор	ов I _" (kVAr) с уче [.]	том первичных і	напряжений и на	грузки
Номин. мощность	5 - 1	0 κ V	15 - 2	20 kV	25 - 3	0 κV
трансформ. (kW)	Холостой ход (kVAr)	Полная нагрузка (kVAr)	Холостой ход (kVAr)	Полная нагрузка (kVAr)	Холостой ход (kVAr)	Полная нагрузка (kVAr)
5	0,75	1	0,8	1,1	1	1,3
10	1,2	1,7	1,5	2	1,7	2,2
20	2	3	2,5	3,5	3	4
25	2,5	3,5	3	4	4	5
75	5	8	6	9	7	11
100	6	10	8	11	10	13
160	10	12	12	15	15	18
200	11	17	14	19	18	22
250	15	20	18	22	20	25
315	18	25	20	28	24	32
400	20	30	22	36	28	40
500	22	40	25	45	30	50
630	28	46	32	52	40	62
1000	45	80	50	85	55	95
1250	50	85	55	90	60	100
1600	70	100	60	110	70	120
2000	80	160	85	170	90	180
5000	150	180	170	200	200	250

Таблица определения реактивной мощности конденсаторной установки (kVAr), необходимой для достижения заданного $\cos \varphi$

Коэффициент К, на который умножается эффективная энергия, расходуемая в kW для определения kVAr необходимого для компенсации коэффициента мощности.

Емкостная реактивная мощность вычисляется по формуле:

 $Q_c = P \cdot K$

Р – действительная мощность нагрузки $\cos \varphi_0$ – $\cos \varphi$ системы без компенсации коэффициента мощности $\cos \varphi_1$ – требуемый $\cos \varphi$ Q – реактивная мощность системы компенсации коэффициента

 ${f Q}_{{f c}}$ – реактивная мощность системы компенсации коэффициент мощности, которую необходимо установить

K – коэффициент соотношения $\cos \varphi_0$ и $\cos \varphi_1$ (см. таблицу ниже)

Фактический коэффициент				Heo	бходим і	ый коэф	фициен	т мощн	ости - сс	os $\overline{\varphi}_{_1}$			
мощности $\cos arphi_0$	0,7	0,75	0,8	0,82	0,84	0,86	0,88	0,9	0,92	0,94	0,96	0,98	1,00
0,5	0,71	0,85	0,98	1,03	1,09	1,14	1,19	1,25	1,31	1,37	1,44	1,53	1,73
0,52	0,62	0,76	0,89	0,94	1	1,05	1,1	1,16	1,22	1,28	1,35	1,44	1,64
0,54	0,54	0,68	0,81	0,86	0,91	0,97	1,02	1,07	1,13	1,2	1,27	1,36	1,56
0,56	0,46	0,6	0,73	0,78	0,83	0,89	0,94	1	1,05	1,12	1,19	1,28	1,48
0,58	0,38	0,52	0,65	0,71	0,76	0,81	0,86	0,92	0,98	1,04	1,11	1,2	1,4
0,6	0,31	0,45	0,58	0,64	0,69	0,74	0,79	0,85	0,91	0,97	1,04	1,13	1,33
0,62	0,25	0,38	0,52	0,57	0,62	0,67	0,73	0,78	0,84	0,9	0,97	1,06	1,27
0,64	0,18	0,32	0,45	0,5	0,55	0,61	0,66	0,72	0,77	0,84	0,91	1	1,2
0,66	0,12	0,26	0,39	0,44	0,49	0,54	0,6	0,65	0,71	0,78	0,85	0,94	1,14
0,68	0,06	0,2	0,33	0,38	0,43	0,48	0,54	0,59	0,65	0,72	0,79	0,88	1,08
0,7		0,14	0,27	0,32	0,37	0,43	0,48	0,54	0,59	0,66	0,73	0,82	1,02
0,72		0,08	0,21	0,27	0,32	0,37	0,42	0,48	0,54	0,6	0,67	0,76	0,96
0,74		0,03	0,16	0,21	0,26	0,32	0,37	0,42	0,48	0,55	0,62	0,71	0,91
0,76			0,11	0,16	0,21	0,26	0,32	0,37	0,43	0,49	0,56	0,65	0,86
0,78			0,05	0,1	0,16	0,21	0,26	0,32	0,38	0,44	0,51	0,6	0,8
0,8				0,05	0,1	0,16	0,21	0,27	0,32	0,39	0,46	0,55	0,75
0,82					0,05	0,1	0,16	0,21	0,27	0,34	0,41	0,49	0,7
0,84						0,05	0,11	0,16	0,22	0,28	0,35	0,44	0,65
0,86							0,05	0,11	0,17	0,23	0,3	0,39	0,59
0,88								0,06	0,11	0,18	0,25	0,34	0,54
0,9									0,06	0,12	0,19	0,28	0,48
0,92										0,06	0,13	0,22	0,43
0,94											0,07	0,16	0,36

Контакторы для конденсаторных батарей CEM CN

Применение - Предназначены для демпфирования пусковых токов в системах компенсации коэффициента реактивной мощности.

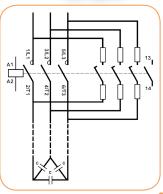
Контакторы для конденсаторных батарей										
			CEM 7,5CN	CEM 10CN	CEM 25CN	CEM 32CN	CEM 50CN	CEM 65CN		
Напряжение (V)/	220-230V	kVAr	4	5	11	15	25	30		
Мощность	380-415V	kVAr	7,5	10	20	25	40	50		
конденсатора (kVar)	440V	kVAr	10	12,5	23	30	45	60		
	480V	kVAr	-	-	25	33	50	65		
AC-6b ($t^{\circ} = 55^{\circ}$ C)	660-690V	kVAr	11	15	34	45	65	87		
АС-6b Номинальный ток (I _e)	(55°C)	Α	11	14	30	40	60	77		
АС-6b Номинальный ток (I _e)	(70°C)	Α	-	-	22	34	50	62		
Макс. ток предохранителя (д	L/gG)	Α	25	35	50	63	100	125		
Сечение подключаемых прог	водников	MM ²	1,5-6		2 x 10	2 x 16	2 x	35		
Усилие зажатия		N.m.	1,	2	1,6 3	2,5 4	4.	6		
Мах. количество коммутаций	й в час		24	10		12	20			
Дополнительные контакты	Дополнительные контакты				1NO					
Электрический ресурсx10 ³			200		100					
Габаритные размеры (ш/в/г)	Габаритные размеры (ш/в/г) мм			45/101/108		45/113/129 55/125/140 66/185/158		5/158		
Код			4643800	4643801	4645130	4646130	4648140	4649140		

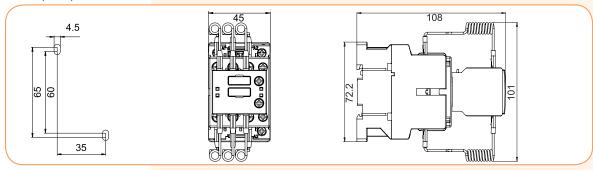
Контакторы для коммутации трехфазных конденсаторов

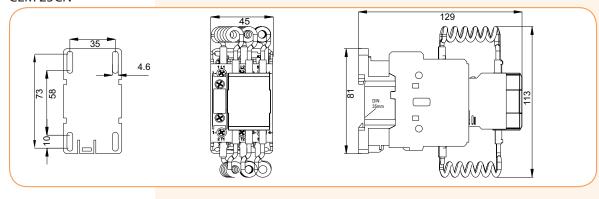
В процессе эксплуатации конденсаторных установок компенсации реактивной мощности, при регулировании ступеней, конденсаторные батареи подвергаются частым переключениям. По сравнению с другим видом электрооборудования, при коммутации конденсаторных батарей возникает кроме обычного номинального рабочего тока, протекание большого пускового тока, значительно (до 250 раз) превышающего номинальное значение.

Поэтому для коммутации конденсаторов необходимо использовать специально сконструированные быстродействующие пускатели. В отличие от обычных контакторов они снабжены дополнительной контактной группой, установленной параллельно основной. К вспомогательным контактам с двух сторон последовательно подключены съемные токоограничивающие элементы, состоящие из нескольких витков проводника с высоким удельным сопротивлением. При коммутациях обе группы контактов приводятся в действие одновременно, но из-за меньшего расстояния, лимитируемого упором, вспомогательные контакты замыкаются на несколько миллисекунд раньше основных, пропускают пусковой ток через токоограничивающие элементы, тем самым, ограничивая ток конденсаторной батареи и размыкаются через 5 миллисекунд после уверенного замыкания основных силовых контактов.

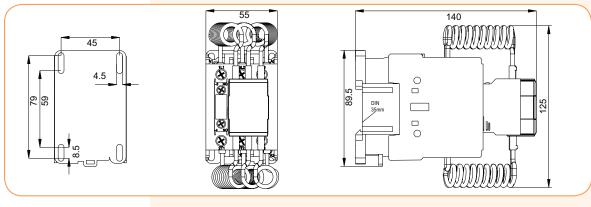
В противном случае броски тока могут привести к повреждению (свариванию) силовой контактной группы и негативно повлиять на срок службы конденсатора. Ограничение пускового тока позволяет также избежать просадок напряжения во время переходных процессов. Такая особенность контактной группы гарантирует стабильную и эффективную работу на протяжении всего срока службы контактора. Пускатели конденсаторов предназначены для прямой коммутации батарей конденсаторов с малой индуктивностью и с малыми внутренними потерями (ЕС 60831, VDE 0560) без дополнительных дросселей. Использование пускателей позволяет снизить пусковой ток батареи конденсаторов до уровня < 70-IR без использования дополнительных демпфирующих резисторов и внешних коммутирующих устройств. Контактная группа пускателей устойчива к свариванию при пиковых пусковых токах до 250-IR. Все контакторы для конденсаторов снабжены нормально разомкнутыми вспомогательными контактами.

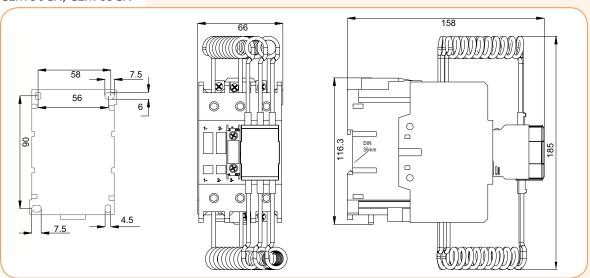

Комплектация "конденсаторными" контакторами (пускателями) сохраняет стабильность характеристик низкоиндуктивных косинусных конденсаторов с малыми собственными потерями (стандарты IEC 70 и 831 1-2) в течение всего их срока службы (100 000...130 000 ч), соизмеримого с ресурсом срабатывания контактора (таблица технических характеристик), и предотвращает возникновение провалов напряжения и импульсных перенапряжений в компенсируемой сети при переключении ступеней КБ.





Габаритные размеры контакторов CEM CN


CEM 7,5CN, CEM 10CN


CEM 25CN

CEM 32CN

CEM 50CN, CEM 65CN

Регуляторы реактивной мощности PFC

Применение - Для компенсации мощности при разных нагрузках регуляторы РFC отслеживают активную и реактивную составляющую мощности путем измерения мгновенных значений напряжения и тока в электрической сети. На основе этих измерений вычисляется фазовый сдвиг между током и напряжением, и это значение сравнивается с предварительно заданной величиной $\cos \varphi$. В зависимости от фактического отклонения коэффициента мощности контроллер РFC подает команду на управление ступенями конденсаторных батарей с минимальным временем реакции от 4 секунд (программируется).

Технические характеристики:	PFC - 6DA / 8DB / 12DB	PFC - 6DB3 / 12DB3		
Одновременное измерение	по одной фазе	по трем фазам		
Напряжение питания	230 - 415 VAC; +10%-15%; 50 - 60 Hz	230 VAC; +10%-15%; 50 - 60 Hz		
Максимальная потребляемая мощность	6/8 ступеней - 5,8 VA 12 ступеней - 6,1 VA	6 ступеней - 6,0 VA 12 ступеней - 6,5 VA		
Номинальный ток In	5 ((A)		
Рабочий диапазон по току	0,125	5,5A		
Диапазон измерения напряжения	195 4	460 VAC		
Диапазон измерения тока	0.125 5.5A			
Регулировка коэффициента мощности	0.85 индукт 0.95 емкостн.	0.85 индукт 0.90 емкостн.		
Релейный выход	8A - 250V	VAC (AC1)		
Максимальная нагрузка основных контактов	10 A	12 A		
Максимальное коммутируемое напряжение	250 VAC	230 VAC		
Электрический ресурс	20 x 10 ⁶	циклов		
Механический ресурс	100 x 10	³ циклов		
Соответствие стандартам	IEC 60255-5, IEC 60255-6, IEC 60068-2-61 IEC 60068-2-6, EN50081-1, EN50082-2			
Рабочая температура	-10 /	+50 °C		
Степень защиты	IP	20		

Тип	Номинальное напряжение Un	Код	In (A)	Количество ступеней	Размер (мм)	Мощность
PFC - 6 DA	222 44514	4656570		до 6	96x96x74	5.8 VA
PFC - 8 DB	230-415 V (+10%; -15%)	4656572	5 A	до 8	144x144x60	6.1 VA
PFC - 12 DB	(+1070,-1570)	4656571		до 12		6.1 VA
PFC - 6 DB3	230V (фаза-нейтраль)	4656575	Γ.Λ	до 6	14414460	6.0 VA
PFC - 12 DB3	(+10%; -15%)	4656576	5 A	до 12	144x144x60	6.5 VA

Описание

- Контроллеры корректировки коэффициента мощности в низковольтных системах определяют действительное значение $\cos \varphi$ и производят автоматическое подключение или отключение ступеней для достижения требуемого значения коэффициента мощности.
- Принцип работы контроллера основан на системе FCP которая позволяет производить мгновенные измерения значений напряжения и тока, обеспечивая оптимальное управление системой компенсации реактивной мощности.
- При отсутствии необходимости автоматической настройки все параметры могут быть заданы вручную.

Особенности:

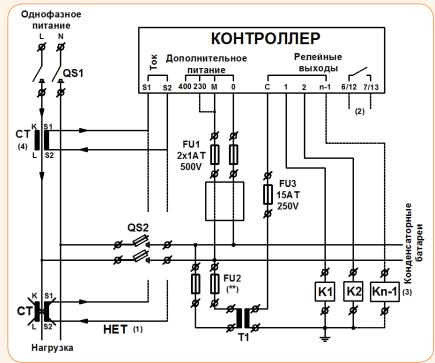
- простой монтаж и эксплуатация;
- малые потери (до 0,5 Вт на 1 кВар мощности);
- возможность подключения в любой точке электросети;
- небольшие эксплуатационные затраты;
- контроль температуры конденсаторных батарей

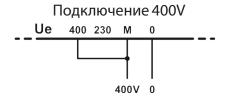
PFC-6DA

PFC-8DB

PFC - 12DB

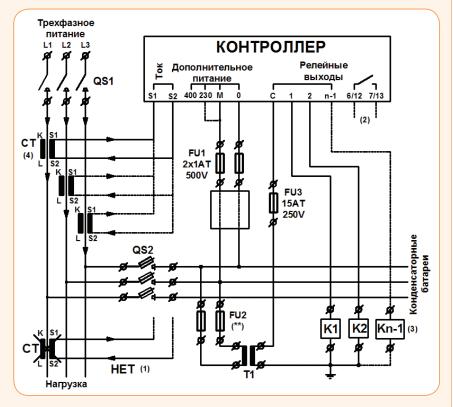
PFC - 6DB3 / 12DB3


Контроллер имеет возможность подключения и программирования внешнего вентилятора для охлаждения конденсаторных батарей, также в нем предусмотрен аварийный сигнал превышения температуры.


Измерения реактивной мощности производится по 4 квадрантам, что обеспечивает максимальную степень компенсации потребляемой энергии.

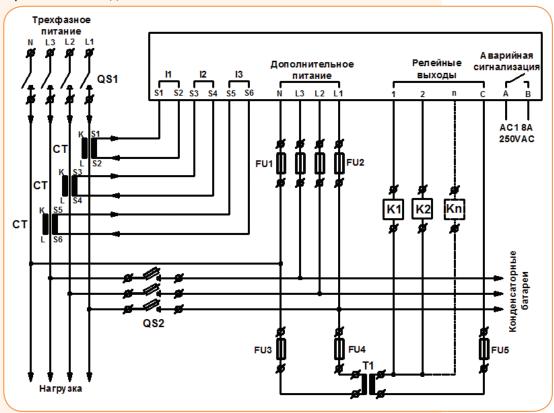
Более подробную информацию о регуляторах реактивной мощности смотрите в Руководстве пользователя

Схемы подключения PFC - 6DA / 8DB / 12DB



Разделительный трансформатор Т1 используется для: Изолирования вспомогательных цепей контроллера от сети питания. Разделения цепей питания катушек контакторов от сети питания.

* Разделительный трансформатор Т1 не входит в комплект поставки



Примечание:

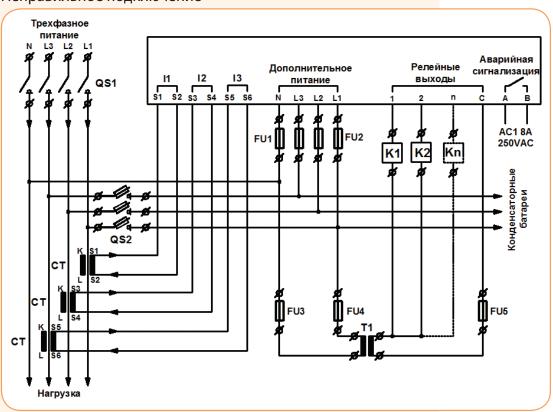

- (1) При неправильном соединении $\cos \varphi$ не изменяется при переключении конденсаторов. Необходимо изменить подключение трансформатора тока (СТ) выше цепи питания конденсаторных батарей.
- (2) Последний блок контактов.
- (3) Основное меню установки параметров Р.05 (см. руководство пользователя РFC)
- (4) Установка чувствительности трансформатора тока (СТ)

Схема подключения PFC - 6DB3 / 12DB3

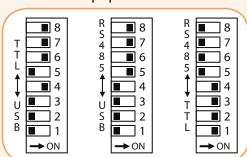
Правильное подключение

Неправильное подключение

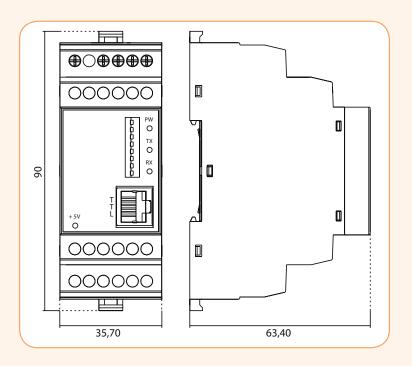
Конвертер PFC-SC-USB485

Особенности:

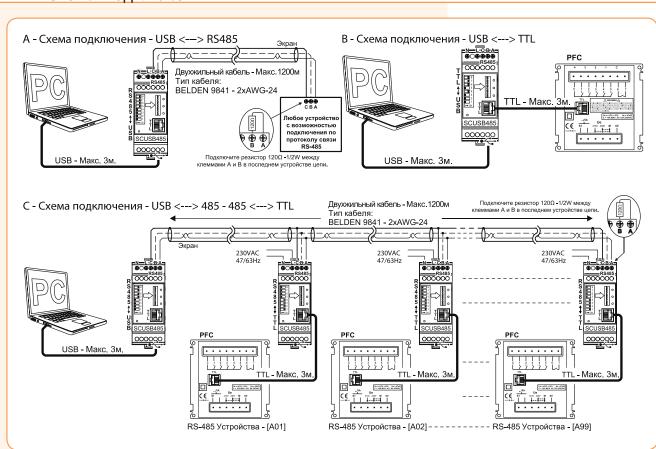
- → защита от перенапряжения на линии RS-485;
- → подключения удаленных устройств к ПК;
- → индикатор наличия питания и передачи данных в случае неисправности;
- → поддержка стандарта RS-485 (2 проводника);
- → стандартный код для обмена информацией (ASCII);
- → компактный размер 2 модуля 35 мм;
- → монтаж на дин рейку;



Применение - Конвертеры предназначены для связи интерфейсов TTL, USB, RS 485.


Технические характеристики:				
Напряжение питания для RS-485	230 VAC; +10%-15%; 50 - 60 Hz			
Номинальная частота	47 - 63 Hz			
Потребляемая мощность	1,8 W			
Последовательный интерфейс	1 USB + RS-485			
Тип протокола	Modbus RTU - ASCII			
Скорость передачи данных	до 115,2 kbit/s			
Максимальное количество подключаемых устройств (TTL/RS-485)	199			
Рабочая температура	-10 °C до + 50 °C			
Температура хранения	-30 °С до + 70 °С			
Электрическая изоляция				
USB_TTL/RS485	1 kV			
N_L/RS485	3 kV			
Максимальная относительная влажность воздуха	95 RH%			
Ширина	2 модуля			
Bec	95 гр			
Размеры	90 x 35,7 x 63,4 mm			
Соответствие стандартам	IEC EN 61000-4-2; IEC EN 61000- 4-5; IEC EN 61000-6-2; IEC EN 61000-4-3; IEC EN 61000-4-6; IEC EN 61000-6-4; IEC EN 61000-4-4; IEC EN 61000-4-11			

Конвертер PFC-SC-USB485									
Тип	Код	Описание							
PFC-SC-USB485	4656577	Конвертер TTL / USB-RS485 (для программирования контроллера PFC)							


Положение DIP - пререключателей

Габаритные размеры

Схемы подключения

Фильтрующие дроссели

Применение - Трехфазные дроссели предназначены для работы в составе конденсаторных установок, включаются последовательно с конденсаторами и используются как защитное, фильтрующее устройство от влияния высших гармоник на сеть потребителя и на конденсатор. При повышении частоты приложенного напряжения к конденсатору его сопротивление снижается, поэтому применяются дроссели, которые вместе с конденсатором образуют контур, отстроенный от частоты гармоники и подавляющий ее. Частота резонанса такого контура должна быть ниже частоты самых низших гармоник, присутствующих в электросети. При наличии гармоник с частотами выше, чем частота контура образованного конденсатором и дросселем, резонанс не возникает.

Стандартные значения коэффициента отстройки составляют 7% и 14% при резонансных частотах 189 и 134 Гц в сетях с номинальной частотой 50Гц.

При таких стандартных значениях величин в трехфазной сети и симметричной нагрузке становится возможным устранить 5-ю (250Гц) и гармоники высших порядков. Это позволяет избежать резонанса между индуктивным сопротивлением и трехфазными конденсаторами, включенными для корректировки коэффициента мощности, и предотвращения перегрузки конденсаторных батарей.

Дроссели оборудованы биметаллическим тепловым реле, которое встроено в центральную обмотку и имеют выводы на отдельные клеммы. Датчик реле срабатывает при температуре выше 90°С.

Технические характеристики:				
Номинальное напряжение	400 V 50 Hz			
Коэффициент фильтрации	7 %	14 %		
Резонансная частота	189 Hz	134Hz		
Погрешность	±3	3%		
Допустимая перегрузка	1,07	x In		
Линейность	1,60 x In			
Теплоизоляция	F (15	55°C)		
Тепловая защита	90	°C		
Рабочая температура	45	°C		
Номинальное напряжение изоляции	4 kV			
Степень защиты	IP00			
Соответствие стандартам	IEC-60289	9; IEC-076		

Загрязнение сетей переменного тока высшими гармониками может привести к следующим последствиям:

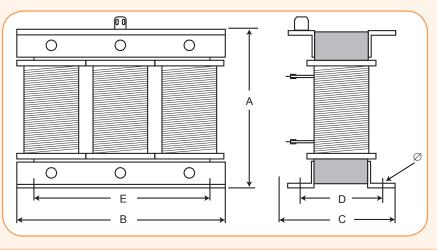
- снижение срока службы конденсаторов;
- преждевременное срабатывание контакторов и других предохранителей;
- выход из строя или ошибочная деятельность компьютеров, приводов двигателей, устройств освещения и др. чувствительных потребителей.

Таблица подбора конденсаторных батарей LPC к фильтрующим дросселям

Фильтрую	щие дроссел	и 400V-	50Hz-7%-189	Нz (мед	і Р)		
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы
HFL 7/5 Cu	5	4656800	7,66	7,2	3 x 30,84	7,5	2 x LPC 3 kVAr, 460V, 50HZ
HFL 7/10 Cu	10	4656801	3,83	14,4	3 x 61,67	8,5	LPC 12.5 kVAr, 460V, 50HZ
HFL 7/12,5 Cu	12,5	4656802	3,07	18	3 x 77,09	9	LPC 15 kVAr, 460V, 50HZ
HFL 7/15 Cu	15	4656803	2,56	21,7	3 x 92,51	9,5	LPC 20 kVAr, 480V, 50HZ
HFL 7/20 Cu	20	4656804	1,92	28,9	3 x 123,35	16	LPC 25 kVAr, 460V, 50HZ
HFL 7/25 Cu	25	4656805	1,53	36,1	3 x 154,18	16,5	LPC 30 kVAr, 460V, 50HZ
HFL 7/30 Cu	30	4656806	1,28	43,3	3 x 185,02	17,5	LPC 40 kVAr, 480V, 50HZ
HFL 7/40 Cu	40	4656807	0,96	57,7	3 x 246,69	28,5	LPC 50 kVAr, 460V, 50HZ
HFL 7/50 Cu	50	4656808	0,77	72,2	3 x 308,36	30	2 x LPC 30.8 kVAr, 460V, 50HZ
HFL 7/100 Cu	100	4656809	0,38	144	3 x 616,73	43	4 x LPC 30.8 kVAr, 460V, 50HZ

Tue	Размеры (мм)							
Тип	А	В	С	D	E	Ø		
HFL 7/5 Cu	170	180	80	70	140	9		
HFL 7/10 Cu	170	180	90	80	140	9		
HFL 7/12,5 Cu	170	180	90	80	140	9		
HFL 7/15 Cu	170	180	90	80	140	9		
HFL 7/20 Cu	220	240	100	90	200	9		
HFL 7/25 Cu	220	240	100	90	200	9		
HFL 7/30 Cu	220	240	100	90	200	9		
HFL 7/40 Cu	270	300	120	100	200	9		
HFL 7/50 Cu	270	300	120	100	200	9		
HFL 7/100 Cu	320	360	150	125	300	9		

Фильтрую	Фильтрующие дроссели 400V-50Hz-14%-134Hz (медь)											
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы					
HFL 14/5 Cu	5	4656810	16,58	7,2	3 x 28,52	15	2 x LPC 3 kVAr, 480V, 50HZ					
HFL 14/10 Cu	10	4656811	8,29	14,4	3 x 57,03	15	LPC 15 kVAr, 525V, 50HZ					
HFL 14/12,5 Cu	12,5	4656812	6,63	18	3 x 71,29	16	LPC 15 kVAr, 480V, 50HZ					
HFL 14/15 Cu	15	4656813	5,53	21,7	3 x 85,55	16	LPC 20 kVAr, 480V, 50HZ					
HFL 14/20 Cu	20	4656814	4,15	28,9	3 x 114,06	19,5	LPC 25 kVAr, 480V, 50HZ					
HFL 14/25 Cu	25	4656815	3,32	36,1	3 x 142,58	20,5	LPC 30 kVAr, 480V, 50HZ					
HFL 14/30 Cu	30	4656816	2,76	43,3	3 x 171,09	31	LPC 40 kVAr, 480V, 50HZ					
HFL 14/40 Cu	40	4656817	2,07	57,7	3 x 228,12	34,5	LPC 50 kVAr, 480V, 50HZ					
HFL 14/50 Cu	50	4656818	1,66	72,2	3 x 285,15	37	2 x LPC 30 kVAr, 480V, 50HZ					

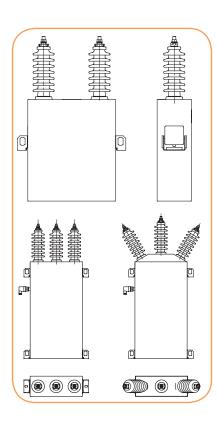

Тип	Размеры (мм)								
I MII	А	В	С	D	E	Ø			
HFL 14/5 Cu	220	240	100	90	200	9			
HFL 14/10 Cu	220	240	100	90	200	9			
HFL 14/12,5 Cu	220	240	100	90	200	9			
HFL 14/15 Cu	220	240	100	90	200	9			
HFL 14/20 Cu	220	240	110	100	200	9			
HFL 14/25 Cu	220	240	110	100	200	9			
HFL 14/30 Cu	270	300	120	100	200	9			
HFL 14/40 Cu	270	300	130	110	200	9			
HFL 14/50 Cu	270	300	130	110	200	9			

Фильтрую	Фильтрующие дроссели 400V-50Hz-7%-189Hz (алюминий)											
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы					
HFL 7/20 AI	20	4656820	1,92	28,9	3 x 123,35	14,5	LPC 25 kVAr, 460V, 50HZ					
HFL 7/25 AI	25	4656821	1,53	36,1	3 x 154,18	17	LPC 30 kVAr, 460V, 50HZ					
HFL 7/30 AI	30	4656822	1,28	43,3	3 x 185,02	26	LPC 40 kVAr, 480V, 50HZ					
HFL 7/40 AI	40	4656823	0,96	57,7	3 x 246,69	26,5	LPC 50 kVAr, 460V, 50HZ					
HFL 7/50 AI	50	4656824	0,77	72,2	3 x 308,36	27	2 x LPC 30.8 kVAr, 460V, 50HZ					

Tues	Размеры (мм)									
Тип	A	В	С	D	E	Ø				
HFL 7/20 AI	220	240	100	90	200	9				
HFL 7/25 AI	220	240	110	100	200	9				
HFL 7/30 AI	270	300	120	100	200	9				
HFL 7/40 AI	270	300	120	100	200	9				
HFL 7/50 AI	270	300	120	100	200	9				

Фильтрующие дроссели 400V-50Hz-14%-134Hz (алюминий)							
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы
HFL 14/20 AI	20	4656830	4,15	28,9	3 x 114,06	27	LPC 25 kVAr, 480V, 50HZ
HFL 14/25 AI	25	4656831	3,32	36,1	3 x 142,58	27	LPC 30 kVAr, 480V, 50HZ
HFL 14/30 AI	30	4656832	2,76	43,3	3 x 171,09	44	LPC 40 kVAr, 480V, 50HZ
HFL 14/40 AI	40	4656833	2,07	57,7	3 x 228,12	44,5	LPC 50 kVAr, 480V, 50HZ
HFL 14/50 AI	50	4656834	1,66	72,2	3 x 285,15	45	2 x LPC 30 kVAr, 480V, 50HZ

Тип	Размеры (мм)							
INII	A	В	C	D	E	Ø		
HFL 14/20 AI	270	120	120	100	200	9		
HFL 14/25 AI	270	120	120	100	200	9		
HFL 14/30 AI	320	160	160	135	300	9		
HFL 14/40 AI	320	160	160	135	300	9		
HFL 14/50 AI	320	160	160	135	300	9		


Высоковольтные силовые конденсаторы KLV

Применение - Конденсаторы KLV разработаны для компенсации реактивной мощности в электрических сетях и промышленных установках. Передовая технология изготовления конденсаторов KLV основана на применении пленочных конденсаторных секций с улучшенными электрическими и механическими соединениями между секциями и пропиткой экологически безопасным изоляционным маслом (не содержащим полихлордифенил). Благодаря высокому начальному напряжению частичных разрядов, конденсаторы KLV пригодны для установки в сетях с наличием высших гармоник. Слабая зависимость изменения емкости от температуры делает их особенно подходящими для установки в схемах фильтров. При необходимости получения номинального напряжения большего значения, чем номинальное напряжение одного конденсатора, блоки объединяются в батареи с помощью последовательного соединения.

Форма заказа	
параметр	описание
Кол-во фаз	1 или 3
Номинальная мощность	kVAr
Номинальное напряжение	V
Номинальная частота	Hz
Допуск емкости	%+ _%;
Число вводов	1, 2
Установка	внутренняя/внешняя
Vacancius vice ravius	/кВ (если требуется
Уровень изоляции	выше номинального)
Встроенные предохранители	да/нет
Реле давления	да/нет
Контактные зажимы	да/нет

Технические данные:			
Диэлектрик:	пленка		
Пропитывающая жидкость:	экологически безопасное изоляционное масло, на основе M/DBT (не содержащее полихлордифенил)		
Разрядный резистор:	встроенный разрядный резистор снижает напряжение на отключенном конденсаторе с максимального значения номинального напряжения до 75 V за 10 минут (разряд до 50 V за 5 минут – под заказ)		
Встроенные предохранители: (устанавливаются под заказ)	В зависимости от номинального напряжения конденсатора и номинальной выходной мощности, высоковольтные силовые конденсаторы КLV имеют различное число последовательно соединенных секций, образующих группы секций, соединенные параллельно. Также могут использоваться внешние предохранители, когда встроенные предохранители не соответствуют более высокому номинальному напряжению или меньшей номинальной выходной мощности конденсатора		
Реле давления с крышкой: (устанавливается под заказ)	Используется для защиты конденсаторных блоков и батарей без защиты от асимметрии. В случае повреждения конденсатора внутри корпуса может возникнуть повышенное давление, которое может вызвать разрыв корпуса. Для контроля такого повреждения, используется реле давления. При превышении давления 0,5 бар приводится в действие контакт, не находящийся под напряжением, который используется для отключения поврежденной батареи через выключатель (установленный со стороны потребителя) без выдержки времени		
Материал корпуса/ Покрытие:	Корпус конденсатора изготовлен из нержавеющей стали, прогрунтован и покрашен. Для установки в помещении возможно изготовление корпуса из обычной стали, прогрунтованного и окрашенного		
Вводы и присоединение:	Контактные зажимы, с возможностью присоединения под любую комбинацию двух проводников от 4 мм² до 50 мм² одножильного провода или многожильного - под заказ		
Установка:	Вертикальная или горизонтальная		
Номинальная частота	50, 60Нz; Допуск - 5%+ 10%		
Средние потери	0,08 - 0,15 W/kVAr		
Стандартные уровни изоляции	7,2 - 12 - 17,5 - 24kV		
Температурная категория	-40°С до +50°С по IEC		
Соответствие стандартам	IEC 60871-1, ANSI/IEEE 18 – 1992, NEMA CP-1, 1988		

